Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core
نویسندگان
چکیده
Due to the intricate structure of porous rocks, relationships between porosity or saturation and petrophysical transport properties classically used for reservoir evaluation and recovery strategies are either very complex or nonexistent. Thus, the pore network model extracted from the natural porous media is emphasized as a breakthrough to predict the fluid transport properties in the complex micro pore structure. This paper presents a modified method of extracting the equivalent pore network model from the three-dimensional micro computed tomography images based on the maximum ball algorithm. The partition of pore and throat are improved to avoid tremendous memory usage when extracting the equivalent pore network model. The porosity calculated by the extracted pore network model agrees well with the original sandstone sample. Instead of the Poiseuille's law used in the original work, the Lattice-Boltzmann method is employed to simulate the single- and two- phase flow in the extracted pore network. Good agreements are acquired on relative permeability saturation curves of the simulation against the experiment results.
منابع مشابه
An Estimation of Multiphase Relative Permeabilities in Reservoir Cores from Micro-CT Data
With significant increase of tomographic equipment power, demand for Prediction relative permeability prediction Predicting in porous media from digital image data. In this work, it is predicted three -phase relative permeabilities with co-applying Darcy’s and Stokes equations in two case studies, namely Bentheimer sandstone and Estaillades limestone which their micro-CT data files were downloa...
متن کاملSensitivity Analysis of the Effect of Pore Structure and Geometry on Petrophysical and Electrical Properties of Tight Media: Random Network Modeling
Several methodologies published in the literature can be used to construct realistic pore networks for simple rocks, whereas in complex pore geometry formations, as formed in tight reservoirs, such a construction still remains a challenge. A basic understanding of pore structure and topology is essential to overcome the challenges associated with the pore scale modeling of tight porous media. A...
متن کاملDirect simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces
Pore-scale forces have a significant effect on the macroscopic behaviour of multiphase flow through porous media. This paper studies the effect of these forces using a new volume-of-fluid based finite volume method developed for simulating two-phase flow directly on micro-CT images of porous media. An analytical analysis of the relationship between the pore-scale forces and the Darcy-scale pres...
متن کاملPore Network Modeling: Analysis of Pore Size Distribution of Arabian Core Samples
We use X-ray microtomography (micro-CT) to image rock cuttings of poorly consolidated sandstone and vuggy carbonate from Saudi Arabian oil and gas fields. The cuttings are a few mm across and are imaged to a resolution between 3 and 12 microns. The details of the three-dimensional pore space can be clearly seen. A maximal ball algorithm is used to extract a topologically equivalent pore network...
متن کاملSPE 115535 Predictive Pore-Scale Modeling: From Three-Dimensional Images to Multiphase Flow Simulations
We demonstrate and validate predictive pore-scale modeling: we start with three-dimensional images of small rock samples obtained using micro-CT scanning with a resolution of a few microns, extract networks from these images and then predict multiphase flow properties by simulating capillary-controlled displacement. We study two sand packs, a poorly consolidated sandstone, Berea sandstone and a...
متن کامل